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BY 
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ABSTRACT 

Denote by/4. the set of n by n, positive definite hermitian matrices. Hadamard 
proved that h (A)>= det (A) for all A E/4.,  where h (A) is the product of the 
main diagonal elements of A. Subsequently, M. Marcus showed that per (A) _-> 
h(A) for all A ~/4. .  This article contains a result for all generalized matrix 
functions from which it follows that h(A)>-_ (per (A ~:~ A E/4..  

Denote by H, the convex cone of n by n positive definite hermitian matrices. 

Let G be a permutation group of degree n. Suppose X is an irreducible, complex 

character of G. If A = (aij) is an n by n matrix, define 

d(A )= ~ g(o') f i  a,~,,). 
tr~EG I=1 

For example, if G = S ,  and x = e ,  d(A)=det(A) .  If G = S .  and X = I ,  

d(A)=per(A) ,  the permanent of A. At the other end of the line, when 

G = {e}, d(A) is Hadamard's function, 

n 

h(A )= I-I a,. 
t= l  

The Hadamard determinant theorem asserts that h(A)>-det(A), for all 

A E H.. In 1918, I. Schur obtained the following vast improvement: 

d(A)/x(e) >= det (A), for all A ~ H,. In 1963, M. Marcus proved a "Hadamard 

theorem for permanents", namely, h (A) _-< per (A), for all A E H,. In this note 

we provide another extension of Hadamard's theorem. 

THEOREM. Let G be a subgroup of S,. Suppose X is an irreducible, complex 
character of G. Then 
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(1) h (A ) ~ [d (A ''" )/X (e )]" 

for all A ~ H.. 

Before proving this result, it may be appropriate to make some observations. 

If G = S ,  and X =e ,  then d(A~l")/x(e)=det(A~l")=(detA)~l". Thus, (I) 

reduces to Hadamard's  Theorem. If G = S,, X = 1, the result becomes 

(2) h (A)  ~ (per (A TM ))". 

In [4], it was shown that 

f( t)  = (per (A'))~/' 

is a strictly increasing function of t for all A E/4 , .  In [9], P. J. Nikolai extended 

this result to any d-function for which x(e)= 1. In fact (see [6, lemma 2]), 

Nikolai's methods apply to arbitrary irreducible characters. They yield, with an 

appropriate definition at t = 0, that 

(3) [d(A')/x(e)]'" 

is a nondecreasing function of the real variable t, for all A ~ /4 , .  It follows that 

h(A)  dominates (3) for any t ( ~  0) less than 1/n. 
I briefly entertained the notion that h(A)  might dominate (3) for any t =< �89 

( t~  0), regardless of the value of n. That this is false can be seen from the 
following example. Note that h (A) ~ (per (A ,2))2 for all A ~ / 4 ,  if and only if 

for all A E/4, .  Let 

S = 

h (A 2) __> (per A )2, 

4 - 1  0 - 1  0 - 1  

- 1  3 - 1  0 - 1  0 

0 - 1  3 - 1  0 - 1  

- 1  0 - 1  3 - 1  0 

0 - 1  0 - 1  3 - 1  

- 1  0 - 1  0 - 1  3 

~H6 .  

Then h(S 2) = 19.125 = 4,727,808 whereas (per S) 2 = (2,259) 2 = 5,103,081. 

Finally, it is clear from the Theorem and Marcus's result that per(A")=> 

(per A)", A E H,. This observation is easily eclipsed, however, by the following 

consequence of the Cauchy-Schwarz inequality (see [8, p. 25]): pe r (A 2) 

( p e r A )  2, A E H . .  
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PROOF Or THEOREM. We use a device of A. W. Marshall and I. Olkin. (Also 

see [1].) Let A~ = D , A D ,  1 < i =< 2", where the D~ are distinct diagonal matrices 

of the form D, = d i a g ( e , , . . . , e , ) ,  with ej = - 1, j = 1 , 2 , . . . , n .  Note that 

n 

d(A,)  = ~ x(o-)FIe,a,o.,)e,,v, 
~ G  t = l  

= d ( A ) .  

Further, since D, AD~ is a unitary similarity of A, (D~AD~)" = D~A"D~. For 0 < s, 

define d ~ :H ,  --->R + by dS(A)  = d(A~).  Then, in summary 

d ~ (A,) = d (D,A "D,) 

= d ( A  s) 

= d~(A). 

Marshall and OIkin [5] observed that E2-"A, = d i a g ( a , , a z 2 , . . . , a , , ) .  It is 

proved in [7] that d ~ is concave on /4. for 0 < s <= I/n. Therefore,  

x ( e ) h ( A )  s = dS(diag (a,,, a22,' '  ", a . . ) )  

=> 2 2-"d~(A,) 

= d ' ( A )  

= d ( A ' ) .  �9 

If A , , M , . . - , A .  are the eigenvalues of A E/4 , ,  it has been shown [8, p. 113] 

that 

(4) per (A "") < 1 " 

It was pointed out to me by C. R. Johnson that (2) is better than (4). By the 

arithmetic-geometric mean inequality, h (A)  _-< ((trace A )/n y.  
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